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Abstract

This paper is the first part of a two-part series'introducing an interactive
activation model of context effects in perception. In this part we develop
the model for the perception of letters in words and other contexts and apply
it to a number of experiments in the recent literature. The model is used to
account for the perceptual advantage for letters in words compared to single
letters and letters in unrelated strings. In the model, these word superior-
ity effects are produced by feedback. The visual input produces partial
activations of 1letters, which in turn produce partial activations of words.
These activations then produce feedback to the letter level, reinforcing
letter sequences which actually spell words. The model can account for the
basic findings on the perception of pronounceable nonwords as well as words.
The account is based on the idea that pseudowords can also activate represen-
tations of words, even though they do not match any word perfectly. As with
word displays, feedback from the activated words reinforces the letters
presented, thereby increasing their perceptibility. The model also accounts
for the role of masking in determining the magnitude of the various effects,
the fact that expectations influence perception of letters in pseudowords more
than letters in words, and for the fact that effects of contextual constraint

and letter cluster frequency are obtained under some conditions and not oth-

ers.
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As we perceive, we are continually extracting sensory information to
guide our attempts to determine what is before us. In addition, we bring to
perception a wealth of knowledge about the objects we might see or hear and
the larger units in which these objects co-occur. As one of us has argued for
the case of reading (Rumelhart, 1977) our knowledge of the objects we might be
perceiving works together with the sensory information in the perceptual pro-
cess. Exactly how does the knowledge which we have interact with the input?

And, how does this interaction facilitate perception?

In this two-part article we have attempted to take a few steps toward
answering these questions. We consider one specific example of the interac-
tion between knowledge and perception —- the perception of letters in words
and other contexts. In Part I we examine the main findings in the literature
on perception of letters in context, and develop a model called the interac-
tive activation model to account for these effects. In Part II (Rumelhart &
McClelland, forthcoming) we extend the model in several ways. We present a
set of studies introducing a new technique for studying the perception of
letters in context, independently varying the duration and timing of the con-
text and target letters. We show how the model fares in accounting for the
results of these experiments and discuss how the model may be extended to an
account of the pronunciation of nonwords. We also explore the influence of
higher-level (semantic and syntactic) inputs to the perceptual process, not
only for the case of visual word perception but for the perception of speech
as well. Finally, we consider how the mechanisms developed in the course of
exploring our model of perception might be used in other sorts of processes,

such as categorization, memory search, and retrieval.
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Basic Findings on the Role of Context in Perception of Letters

The notion that knowledge and familiarity play a role in perception has
often been supported by experiments on the perception of letters in words or
word-like letter strings (Bruner, 1957; Neisser, 1967). It has been known for
nearly 100 years that it is possible to identify letters in words more accu-
rately than letters in random letter sequences under tachistoscopic presenta-
tion conditions (Cattell, 1886; see Huey, 1908, and Neisser, 1967 for
reviews). However, until recently such effects were obtained using whole
reports of all of the letters presented. These reports are subject to guess-
; ing biases, so that it was possible to imagine that familiarity did not deter-
mine how much was seen but only how much could be inferred from a fragmentary

percept. In addition, for longer stimuli, full reports are subject to forget-

ting. We may see more letters than we can actually report in the case of non-
words, but when the letters form a word we may be able to retain the item as a
single wunit whose spelling may simply be read out from long-term memory.
Thus, despite strong arguments to the contrary by proponents of the view that
familiar context really did influence perception, it has been possible until
recently to imagine that the context in which a letter was presented only
influenced the accuracy of post-perceptual processes, and not the process of

perception itself.

The perceptual advantage of letters in words. The seminal experiment of

Reicher (1969) seems to suggest that context does actually influence percep-
tual processing. Reicher presented target letters in words, unpronounceable

nonwords, and alone, following the presentation of the target display with a

presentation of a patterned mask. The subject was then tested on a single
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letter in the display, using a forced choice between two alternative letters.
Both alternatives fit the context to form an item of the type presented, so
that, for example, in the case of a word presentation, the alternative would

also form a word in the context.

Forced choice performance was more accurate for letters in words than for
letters in nonwords or even for single letters. Since both alternatives made
a word with the context, it is not possible to argue that the effect is due to
post-perceptual guessing based on equivalent information extracted about the
target letter in the different conditions. It appears that subjects actually
come away with more information relevant to a choice between the alternatives
when the target letter is a part of a word. And, since one of the control
conditions was a single letter, it is not reasonable to argue that the effect
is due to forgetting letters that have been perceived. It is hard to see how
a single letter, once perceived, could be subject to a greater forgetting than

a letter in a word.

Reicher's finding seems to suggest that perception of a letter <can be
facilitated by presenting it in the context of a word. It appears, then, that

our knowledge about words can influence the process of perception.

Our model presents a way of bringing such knowledge to bear. The basic
idea is that the presentation of a string of letters results in partial
activation of representations of letters consistent with the visual input.
These activations in turn produce partial activations of representations of
words consistent with the letters, if there are any. The activated represen-
tations of words then produce feedback which serves to reinforce the activa-

tions of the representations of letters. As a result, letters 1in words are
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more perceptible, because they receive more activation than representations of

either single letters or letters in unrelated context.

Reicher's basic finding has been investigated and extended in a large
number of studies, and there now appears to be a set of important related
findings that must also be explained. Here follows a brief discussion of

several further results which seem to be both basic and well established.

Irrelevance of word shape. The perceptual advantage for letters in words

does not depend on presenting words in visually distinctive, or even familiar,
forms. Typically, the effects are obtained using words typed in all upper
case type, which minimizes configurational aspects of words as visual forms.
In addition, the word advantage over nonwords can be obtained using stimuli
presented in mixed upper and lower case type (Adams, 1979; McClelland, 1976).
Although performance is affected by mixing upper and lower case letters in the
same string, the disruption ;s of about the same magnitude for letters in non-
words as it is for letters in words, as long as both types of items are tested
at comparable performance levels (Adams, 1979). It is therefore clear that
the word advantage depends on presenting the target letter in the context of
an item which together with the target forms a familiar arrangement of

letters, independent of its actual visual form.

Dependence on masking. The word advantage over single letters and non-

words appears to depend upon the visual conditions used (Johnston & McClel-
land, 1973; Massaro & Klitzke, 1979; see also Juola, Leavitt & Choe, 1974; and
faylor & Chabot, 1978). The word advantage is quite large when the target
appears in a distinct, high-contrast display followed by a patterned mask of

similar characteristics. However, the word advantage over single letters is
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actually reversed, and the word advantage over nonwords becomes quite small
when the target is indistinct, low in contrast and followed by a blank, non-
patterned field. Recently, it has also been shown that the word advantage
over single letters is greatly reduced if the patterned mask contains letters
instead of nonletter patterns (Johnston & McClelland, in press; Taylor & Cha-

bot, 1978).

Extension to pronounceable nonwords. The word advantage also applies to

pronounceable nonwords, such as REET or MAVE. A large number of studie=x
(Aderman & Smith, 1971; Baron & Thurston, 1973; Carr, Davidson & Hawkins,
1978; Spoehr & Smith, 1975) have shown that letters in pronounceable nonwords
(also called pseudowords) have a large advantage over letters in unpronounce-
able nonwords (also called unrelated letter strings), and three studies (Carr,
et al, 1978; Massaro & Klitzke, 1979; McClelland & Johnston, 1977) have

obtained an advantage for letters in pseudowords over single letters.

It now appears that the pseudoword advantage depends on the subjects'
expectations (Aderman & Smith, 1971; Carr, et al, 1978). Carr, et al (1978)
found that if subjects are under the impression that pseudowords might be
shown, performance on pseudowords 1is almost as accurate as performance on
letters in words. But if they do not expect any pseudowords, performance on
these items 1is not much better than performance on unpronounceable nonwords.
Interestingly, Carr, et al (1978) found that the word advantage did not depend
on expectations. There was a sizable advantage for letters in words over

letters in unrelated context whether the subject expected words or only unre-

lated letter strings.
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Another important fact about performance on pseudowords is that differ-
ences in letter cluster frequency do not appear to influence accuracy of per-
ception of letters in either words or pseudowords (McClelland & Johnston,

1977).

Absence of constraint effects. One important finding which rules out

several of the models which have been proposed previously is the finding that
letters in highly constraining word contexts have little or no advantage over
letters in weakly constraining contexts under the distinct target/patterned
mask conditions which produce a large word advantage (Johnston, 1978; see also
Estes, 1975). For example, if the set of possible stimuli contains only
words, the context HIP constrains the first letter to be either an S, a C, or
a W, whereas the context INK is compatible with 12 to 14 letters (the exact
number depends on what counts as a word). We might expect that the former,
more strongly constraining context, would produce superior detection of a tar-
get letter, but, in a very carefully controlled and executed study, Johnston
(1978) found a non—sfénificant effect in the reverse direction. Although
there are some findings suggesting that constraints do influence performance
under other conditions, they do not appear to make a difference under the dis-

tinct target/patterned mask conditions of the Johnston study.

To be successful, any model of word perception must provide an account
not only for Reicher's basic effect, but for the separate and joint effects
(or lack thereof) due to visual conditions, stimulus structure, expectations,
and constraints on the perception of letters in context. Our model provides
an account for all of these effects. We begin by presenting the model in

abstract form, then focus in on the details of the model, and present an
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example of the working of the model in a hypothetical experimental trial.
Subsequently, we turn to a detailed consideration of the findings discussed in
this section. In the final section of Part I, we also consider a few other
facts about the perception of letters in context and suggest how our model

might be extended to account for these effects as well.

The Interactive Activation Model

We approach the phenomena of word perception with a number of basic
assumptions which we want to incorporate into the model. First, we assume
that visual perception takes place within a system in which there are several
levels of processing, each concerned with forming a representation of the
input at a different level of abstraction. For visual word perception, we
assume that there is a visual feature level, a letter level, and a word level,
as well as higher levels of processing which provide "top-down" input to the

word level.

Second, we assume that visual perception involves parallel processing.
There are two different senses in which we view perception as parallel. We
assume that visual perception is spatially parallel. That is, we assume that
information covering a region 1in space at least large enough to contain a
four-letter word is processed simultaneously. In addition, we assume that
visual processing occurs at several levels at the same time. Thus, our model
of word perception is spatially parallel, (i.e. capable of processing several
letters of a word at one time) and involves processes which operate simultane-
ously at several different levels. Thus, for example, processing at the
letter 1level presumably occurs simultaneously with processing at the word

level, and with processing at the feature level.

pcer
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Thirdly, we assume that perception is fundamentally an interactive pro-
cess. That is, we assume that "top-down" or "conceptually driven" processing
works simultaneously and in conjunction with "bottom-up"” or "data driven" pro-
cessing to provide a sort of multiplicity of constraints which jointly deter-
mine what we perceive. Thus, for example, we assume that knowledge about the
words of the language interacts with the incoming featural information in co-
determining the nature and time course of the perception of the letters in the

word.

Finally, we wish to implement these assumptions using a relatively simple
method of interaction between sources of knowledge whose only "currency" is

simple "excitatory" and "inhibitory" activations of a neural type.

Figure 1 shows the general conception of the model. Perception 1is
assumed to consist of a set of interacting levels, ecdch level communicating
with several others. Communication proceeds through a spreading activation
mechanism in which activation at one level "spreads" to neighboring levels.
The communication can consist of both excitatory and inhibitory messages.
Excitatory messages increase the activation level of their recipients. Inhi-
bitory messages decrease the activation level of their recipients. The arrows
in the diagram represent excitatory connections and the circular ends of the
connections represent inhibitory connections. The intra-level inhibitory loop
represents a kind of 1lateral inhibition in which incompatible units at the
same level compete. For example, since a string of, say, four letters can be
interpreted 2as at most one four-letter word, the various possible words mutu-
ally inhibit one another and in that way compete as possible interpretations

of the string.
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HIGHER LEVEL INPUT i

ACOUSTIC
FEATURE LEVEL

!
|

VISUAL INPUT ACOUSTIC INPUT

Figure 1. A sketch of some of the processing levels involved in visual
. and auditory word perception, with interconnections.
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It is clear that there are many levels which are important in reading and
perception in general and the interactions among these levels are important
for many phenomena. However, a theoretical analysis of all of these interac-
tions introduces an order of complexity which obscures comprehension. For
this reason, we have restricted the present analysis to an examination of the
interaction between a single pair of levels, the word and letter levels. We
have found that we can account for the phenomena reviewed above by considering
only the interactions between letter level and word level elements. There-
fore, for the present we have elaborated the model only on these ¢two levels,
as illustrated in Figure 2. We have delayed consideration of the effects of
higher-level processes and/or phonological processes, and we have ignored the
reciprocity of activation which may occur between word and letter levels and
any other 1levels of the system. We consider aspects of the fuller model

including these influences in Part II.

Specific Assumptions

Representation assumptions. For every relevant unit in the system we

assume there 1is an entity called a node. We assume that there is a node for

each word we know, and that there is a node for each letter in each position.

The nodes are organized into levels. There are word level nodes, and
letter 1level nodes. Each node has connections to a number of other nodes.
The set of nodes to which a node connects are called its neighbors. Each con-

nection is two way. There are two kinds of connections: excitatory and inhi-

bitory. If the two nodes suggest each other's existence (in the way that the
node for the word 'the' suggests the node for an initial 't' and vice versa)

then the connections are excitatory. If the two nodes are inconsistent with
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[

VISUAL INPUT

Figure 2. The simplified processing system considered in Part I.
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one another (in the way that the node for the word 'the' and the node for the
word 'boy' are inconsistent) then the relationship is inhibitory. (Note that
we identify nodes by the units they detect, placing them in quotes: Stimuli

presented to the system are typed in uppercase letters).

Connections may occur within levels or between adjacent levels. There
are no connections between non-adjacent levels. Connections within the word
level are mutually inhibitory since only one word can occur at any one place
at any one time. Connections between the word level and letter level may be
either inhibitory or excitatory (depending on whether or not the letter 1is a
part of the word 1in the appropriate letter position). We call the set of

nodes with excitatory connections to a given node 1its excitatory neighbors.

We call the set of nodes with inhibitory connections to a given node its inhi-

bitory neighbors.
bitory neignbors

A subset of the neighbors of the letter 't' are illustrated in Figure 3.
Again, excitatory connections are represented by arrows ending with points and
inhibitory connections are represented by arrows ending with dots. We
emphasize that this is a small subset of the neighborhood of the initial 't'.
The picture of the whole neighborhood, including all the connections among
neighbors and their connections to their neighbors, is much too complicated to

present in a two-dimensional figure,

Activation assumptions. There is, associated with each node, a momentary

level of activation. This level of activation is a real number, and for node
1 we will represent it by a,(t). Any node with a positive degree of activa-
tion i3 said to be active. In the absence of inputs from its neighbors, all

nodes are assumed to decay back to an inactive state; that 1is, to an

-
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Interactive Activation Model

activation value at or below zero. This resting level may differ from node to
node, and corresponds to a kind of a priori bias (Broadbent, 1967), determined
by frequency of activation of the node over the long term. Thus, for example,
the nodes for high frequency words have resting levels higher than those for
low frequency words. In any case, the resting level for node i is represented

by ri. For units not at rest, decay back to the resting level occurs at some

rate Oi.

When the neighbors of a node are active they influence the activation of
the node by either excitation or inhibition, depending on their relation to
the node. These excitatory and inhibitory influences combine by a simple
weighted average to yield a net input to the unit, which may be either excita-
tory (greater than zero) or inhibitory. In mathematical notation, if we let

n1(1:) represent the net input to the unit, we can write the equation for its

value as
ng(t) = Ddjjej(t) - E:Yikik(t). ()
3

where the €4(t)s are the activations of the active excitatory neighbors of the
node, the i, (t)s are the activations of the active inhibitory neighbors of the

node, and the dij’ and Yjs are associated weight constants. Inactive nodes

have no influence on their neighbors. Only nodes in an active state have any

effects, either excitatory or inhibitory.

The net input to a node drives the activation of the node up or down
depending on whether it is positive or negative. The degree of the effect of

the input on the node is modulated by the node's current activity level, to
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keep the input to the node from driving it beyond some maximum and minimum
values (Grossberg, 1978). When the net input is excitatory ("1(t)>°)' the

effect on the node is given by

4i(t) = ni(t)(M - ai(t)) . (2)

where M is the maximum activation level of the unit. The modulation has the
desired effect because as the activation of the unit approaches the maximum,

the effect of the input is reduced to zero.
In the case where the input is inhibitory ("i(t)<0). the effect of the

input on the node is given by

4(8) = n(t)(ag(t) = m) , (3)

where m is the minimum activation of the unit.

The new value of the activation of a node at time t+8t is equal to the

value at time t, minus the decay, plus the influence of its neighbors at time

t:

ay (t+68) = a;(t) - O;(ag(t) - ry) + 44 (t). ()

Input assumptions. Upon presentation of a stimulus a set of featural

inputs are assumed to be made available to the system. During each moment in
time each feature has some probability p of being detected. Upon being

detected, the feature begins sending activation to all letter level nodes
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which contain that feature. All letter level nodes which do not contain the
extracted feature are inhibited. The probability of detection and the rate at
which the feature excites or inhibits the relevant letter nodes are assumed to
depend on the clarity of the visual display. It is assumed that features are
binary and that we can extract either the presence or absence of a particular
feature. So, for example, when viewing the letter R we can extract among
other features the presence of a diagonal line segment in the 1lower right

corner and the absence of a horizontal line across the bottom.

Presentation of a new display following an old one results in the proba-
bilistic extraction of the set of features present in the new display. These
features, when extracted, replace the old ones 1in corresponding positions.
Thus, the presentation of an O following the R described above would result in

the replacement of the two features described above with their opposites.

The Operation of the Model

Now, consider what happens when an input reaches the system. Assume that
at time t, all prior inputs have had an opportunity to decay, so that the
entire system is in its quiescent state and each node is at its resting level.
The presentation of a stimulus initiates a chain in which certain features are
extracted and excitatory and inhibitory pressures begin to act upon the letter
level ncdes. The activation levels of certain letter nodes are pushed above
their resting levels. Others receive predominately inhibitory inputs and are
pushed below their resting levels. These letter nodes, in turn, begin to send
activation to those word level nodes they are consistent with and inhibit
those word nodes they are not consistent with. In addition, the various

letter level nodes attempt to suppress each other with the strongest ones
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getting the upper hand. As word level nodes become active they in turn com-
pete with one another and send excitation and inhibition back down to the
letter leve! nodes. If the input features were close to those for one partic-
ular set of letters and those letters were consistent with those forming =
particular word, the positive feedback in the system will work to rapidly con-
verge on the appropriate set of letters, and the appropriate word. I not,
they will compete with each other and perhaps no single set of letters or sin-
gle word will get enough activation to dominate the others and their inhibi-
tory relationships might strangle each other. The exact details of this pro-
cess depend on the values of the various parameters of the model in ways which

we will explore as we proceed.

Simulations

In the following example, as in the remainder of the paper, we illustrate
the properties of the model with computer simulations. For purposes of these
simulations we have made a number of other simplifying assumptions. These

additional assumptions fall into four classes:

(1) discrete rather than continuous time,
(2) simplified feature analysis of the input font,
(3) restrictions of the parameter space, and

(4) a limited lexicon.

The simulation of the model operates in discrete time slices or ticks,
updating the activations of all of the nodes in the system once each cycle on
the basis of the values on the previous cycle. Obviously, this 1is simply a

matter of computational convenience, and not a fundamental assumption. We
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have endeavored to keep the time slices "thin" enough so that the model's

behavior is continuous for all intents and purposes.

Any simulation of the model involves making explicit assumptions about
the appropriate featural analysis of the input font. We have, for simplicity,
chosen the font and featural analysis employed by Rumelhart (1971) and by
Rumelhart and Siple (1974) and illustrated in Figure 4. Although the experi-
ments we have simulated employed different type fonts, presumably the basic
results do not depend on the particular font used. The simplicity of the

present analysis recommends it for the simulations.

We have endeavored to find a single set of parameter values for our model
which would allow us to account for all of the basic findings reviewed above.
In order to keep the search space to an absolute minimum, we have adopted
various restrictive simplifications. We have assumed that the weight parame-
ters, dij and yij depend only on the levels of nodes i and j and on no other
characteristies of their identity. This means, among other things, that the
excitatory connections between all letter nodes and all of the relevant word
nodes are equally strong, independent of the identity of the words. Thus, for
example, the degree to which the node for an initial 't' excites the node for
the word 'tock' is exactly the same as the degree to which it excites the node
for a word like 'this,' in spite of a substantial difference in frequency of
usage. To further simplify matters, two types of influences have been set to
zero, namely the word to letter inhibition and the letter to letter inhibi-
tion. We have also assigned the same resting value to all of the letter
nodes, simply giving each node the value of zero. The resting value of nodes

at the word 1level has been set to a value between -.05 and 0, depending on
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Figure U4, The features used to construct the letters in the font assumed
by the simulation program, and the letters themselves (from Rumelhart & Siple,
‘ 1974),
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word frequency. The values of the remaining parameters have been fixed at the
values given in Table 1. In the simulations which follow, all parameters are
fixed at the values indicated in the table. The table also includes a brief
statement of the significance or rationale for the particular value assigned.
In some cases, fuller discussions are warranted, and are given in the context
of a discussion of the model's behavior 1in accounting for one effect or

another.

In order to account for the dependence of the phenomena of letter percep-
tion on visual conditions and expectations, it is necessary to assume that
some parameters depend on these factors. The quality of the visual display is
assumed to influence the system in two ways. First of all, it may not be pos-
sible for the visual system to extract all the features of the display if it
becomes too degraded. To capture this possibility, we allow the probability
of feature extraction to vary with the quality of the display. Once the qual-
ity 1is sufficiently good for perfect feature extraction, the strength of the
effect exerted by the features is assumed to depend on such things as the
brightness, contrast, size, and retinal position of the display. The parame-
ters which reflect the differential strength of the effect of the input are
the feature to letter excitation parameters. It is assumed that these parame-
ters increase and decrease together as visual quality increases or decreases,
but stay in the same ratio. To accommodate the fact that performance depends
in some conditions on the subjects' expectations, we have found it sufficient
to assume that one of the internal parameters of the model is under subject
control. As we shall see below, we are able to provide a straightforward
account of the effects of expectations about whether pronounceable nonwords

will be shown if we assume that subjects have control over the strength of the
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Table 1

Parameter Values Used in the Simulations

Parame-er

Value

Basic node characteristics

decay rate

maximum activation
minimum activation

Resting levels
letter level
word level

Input
p of feat detection
feat-let excitation
feat-let inhibition
E/I ratio

Letter-word influences
excitation
inhibition

Within-level inhibition
word level

letter level

Word-letter feedback
excitation
inhibition

Output

integration rate

Output Exponentiation
letter level
word level

gt

.07

1.00
.20

var.
var.
var.
1/30

.07
. 04
or

.21

.21

10
20

Remarks

Scales time. Low value ensures adequacy
of approximation of continuity.

Scales activations.

Small negative value allows rapid re-
activation of inhibited units.

Simplifying assumption.
Depends on frequency. (range: 0 to -.05)

Depends on visual conditions.

Depends on visual conditions.

Inhibition much stronger than excitation so
that one feature incompatible with a letter
results in net bottom-up inhibition.

Low value allows letter level to excite words
with some letters incompatible with input.
High value prohibits these activations.

Large inhibitory interactions allow correct
word to dominate total activity at word level.
Simplifying assumption. Unnecessary because of
strong inhibition from inappropriate features.

Simplifying assumption.

Low rate lets units be quickly activated
then inhibited without becoming accessible.

Scales relation of activation to p(correct).
Larger value required to offset greater
number of alternatives.
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letter to word inhibition parameter. We will see why this is so below. In
any case, the parameters which are assumed to be influenced by visual condi-
tions or expectations are designated as variable in Table 1. As we go along
we wWill explore the effects of variations in these parameters on the perfor-

mance of the model.

Finally, our simulations have been restricted to four-letter words. We
have equipped our simulation program with knowledge of 1179 four-letter words
oceurring at least 2 times per million in the Kucera and Francis word count
(1967). Plurals, inflected forms, first names, proper names, acronyms, abbre-
viations, and occasional unfamiliar entries arising from apparent sampling
flukes have been excluded. This sample appears to be sufficient to reflect
the essential characteristics of the language and to show how the statistical
properties of the language can affect the process of perceiving letters in

words.

An example. For the purposes of this example, imagine that the word WORK
has been presented to the subject and that the subject has extracted those
features shown in Figure 5. In the first three-letter positions the features
of the letters W, O and R have been completely extracted. In the final posi~
tion a set of features consistent with the letters K and R have been
extracted, with those features in a portion of the pattern unavailable. We
wish now to chart the activity of the system resulting from this presentation.
Figure 6 shows the time course of the activations for selected nodes at the

word and letter levels respectively.

At the word level, we have charted the activity levels of the nodes for

the words ‘work', 'word', 'wear' and 'weak'. Note first, that 'work' is the




A s S A i o s e .

e ——— s

s AR o s R R g

Interactive Activation Model

Part I

McClelland & Rumelhart

Figure 5. A hypothetical set of features which might be extracted

trial in an

experiment on word perception.
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Figure 6. The time course of activations of selected nodes at the word
and letter levels, after extraction of the features shown in Figure 5.




o« > eian a

Interactive Activation Model McClelland & Rumelhart
Part I 26

only word in the lexicon consistent with all the presented information. As a
result, its activation level is the highest and reaches a value of .8 through
the first 40 time cycles. The word 'word' is consistent with the bulk of the
information presented and, as a result, first rises and later, as a result of
competition with 'work' is pushed back down below its resting 1level. The
words 'wear' and 'weak' are consistent with the information presented in the
first and fourth letter positions, but inconsistent with the information in
letter positions 2 and 3. Thus, the activations of these nodes drop to a
rather low level. This level is not quite as low of course as the activation
level of words such as 'gill' which contain nothing in common with the
presented information. Although not shown in the figure these words attain
near-minimum activation levels of about -.20 and stay there as the stimulus
stays on. Returning to 'wear' and ‘'weak', we note that these words are
equally consistent with the presented information and thus drop together for
the first 9 or so time units. At this point, however, top-down information
has determined that the final letter is K and not R. As a result, the word
'weak' becomes more similar to the pattern at the letter level than the word
'wear' and, as a result, begins to gain a slight advantage over 'wear.' This
result occurs in the model because as the word 'work' gains in activation it
feeds activation back down to the letter level to strengthen the 'k' over the
'r'. The strengthened 'k' continues to feed activation into the word level
and strengthen consistent words. The words containing 'r' continue to receive
activation from the words consistent with 'k', and are therefore ultimately

weakened, as illustrated in the lower panel of the Figure.

One of the characteristics of the parameter set we have adopted 1is that

feature to letter inhibition is 30 times strounger than feature to letter

L .
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excitation (see Table 1). This ratio ensures that as soon as a feature is
detected which is inconsistent with a particular letter, that letter receives
relatively strong net bottom-up inhibition. Thus, in our example, the infor-
mation extracted clearly disconfirms the possibility that the letter D has
been presented in the fourth position, and thus the activation 1level of the
'd' node decreases quickly to near its minimum value. However, the bottom-up
information from the feature level supports both 'k' and 'r' in the fourth

position, Thus, the activation level for each of these nodes rises slowly.

These activation levels, along with those for 'w', 'o' and 'r' push the
activation level of 'work' above zero and it begins to feed back, and by about
time cycle 4 it is beginning to push the 'k' above the 'r' (WORR is not a
word). Note that this separation occurrs just before the words 'weak' and
'wear' separate. It is this feedback that causes them to separate. Ulti-~
mately, the 'r' reaches a level well below that of 'k' where it remains, and
the 'k' pushes toward a .8 activation level. Remember that for purposes of

simplicity the word to letter inhibition and the intra-letter level inhibition

have both been set to 0. Thus, 'k' and 'r' both co-exist at moderately high
levels, the 'r' fed only from the bottom-up and the 'k' fed from both bottom-

up and top-down.

Although this example is not too realistic in that we assumed that only

partial information was available in the input for the fourth letter position,

whereas full information is available at the other letter positions, it does
illustrate many of the important characteristics of the model. It shows how
ambiguous sensory information can be disambiguated by top-down processes. .
Here we have a very simple mechanism capable of applying knowledge of words in

the perception of their component letters. i
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On Making Responses

One of -he more problematic aspects of a model such as this one 1is a
specification of how these relatively complex patterns of activity might be
related to the content of percepts and the sorts of response probabilities we
observe in experiments. We assume that responses and perhaps the contents of
perceptual experience depend on the temporal integration of the pattern of

activation over all of the nodes. The integration process is assumed to occur

slowly enough that brief activations may come and go, without necessarily
becoming accessible for purposes of responding or entering perceptual experi-
ence., However, as the activation lasts longer and 1longer, the probability
that it will be reportable increases. Specifically, we think of the integra-
tion process as taking a running average of the activation of the node aver-

aged over the immediately preceding time interval:

(5)

aj(t) = jjai(we'(t"‘)"dt.

The parameter r represents the relative weighting given to old and new infor-
mation. Larger values of r correspond to larger weight for new information.

Response strength in the sense of Luce's choice model (Luce, 1959), is an

exponential function of the running average activation:

w aj (t) (6)
si(t) z e

The parameter w determines how rapidly response strength grows with increases

_—y
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in activation. Following Luce's formulation, we assume that the probability

of making a response based on node i is given by

Si(t) (7
p(Ry,t) =—

2is(t)
J<L

where L represents the set of nodes competing at the same level with node i.

Most of the experiments we Wwill be considering test subject's performance
on one of the letters in a word, or on one of the letters in some other type
of display. In accounting for these results, we have adopted the assumption
that responding is always based on the output of the letter level, rather than
the output of the word level or some combination of the two. Thus, with
regard to the previous example, it is useful to look at the "output values"
for the letter nodes 'r', 'k' and 'd'. Figure 7 shows the output values for
these simulations. The output value is the probability that, if a response
was 1initiated at time t, the letter in question would be selected as the out-
put or response from the system. As intended, these output values grow some-
what more slowly than the values of the letter activations themselves, but
eventually come to reflect the activations of the letter nodes, as they reach

and hold their asymptotic values.

Comments on Related Formulations

Before turning to the applications of the model, some comments on the
relationship of this model to other models extant in the literature is in
order. We have tried to be synthetic. We have taken ideas from our own pre~

vious work and from the work of others in the literature. In what follows, we
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Figure 7. "OQutput wvalues" for the letters 'r', 'k', and 'd', after
presentation of the display shown in Figure 5,
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have attempted to identify the sources of most of the assumptions of the model

and to show in what ways our model differs from the models we have drawn on.

First of all, we have adopted the approach of formulating the model 1in
terms which are similar to the way in which such a process might actually be
carried out in a neural or neural-like system. We do not mean to imply that
the nodes in our system are necessarily related to the behavior of individual
neurons. We will, however, argue that we have kept the kinds of processing
involved well within the bounds of capability for simple neural circuits. The
approach of modeling information processing in a neural-like system has
recently been advocated by Szentagothai and Arbib (1975), and is embodied in
many of the papers presented in the forthcoming volume by Hinton and Anderson

(in press) as well as many of the specific models mentioned below.

One case in point is the work of Levin and Eisenstadt (1975) and Levin
(1976). They have proposed a parallel computational system capable of
interactive processing which employed only excitation and inhibition as its
"currency." Although our model could not be implemented exactly in the format
of their system (called Proteus) it is clearly in the spirit of their model

and could readily be implemented within a variant of the Proteus system.

In a recent paper McClelland (1979) has proposed a cascade model of per-
ceptual processing in which activations on each level of the system drive
those at the next higher level of the system. This model has the properties
that partial outputs are continuously available for processing and that every
level of the system processes the input simultaneously. The present model
certainly embodies these assumptions. It also generalizes them, permitting

information to flow in both directions simultaneously.
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Hinton (1977) has developed a relaxation model for visual perception 1in
which multiple constraints interact by means of incrementing and decrementing
real numbered values associated with various interpretations of a portion of
the visual scene in an attempt to attain a maximally consistent interpretation
of the scene. Our model can be considered a sort of relaxation system in
which activation levels are manipulated to get an optimal interpretation of an

input word.

James Anderson and his colleagues {(Anderson, 1977: Anderson, Silverstein,
Ritz, & Jones, 1977) and Kohonen and his colleagues (Kohonen, 1977) have
developed a sort of pattern recognition system which they call an associative
memory system. Their system shares a number of commonalities with ours. One
thing the models share is the scheme of adding and subtracting weighted exci-
tation values to generate output patterns which represent cleaned up versions
of the input patterns. In particular, our dij and Y;; correspond to the
matrix elements of the associative memory models. Our model differs in that
it has multiple levels and employs a non-linear cumulation function similar to

one suggested by Grossberg (1978), as mentioned above.

Our model also draws on earlier work in the area of word perception.
There 1is, of course, a strong similarity between this model and the logogen
model of Morton (1969). What we have implemented might be called a hierarchi-
cal, non-linear, logogen model with feedback between levels and inhibitory
interactions among logogens at the same level. We have also added dynamic

assumptions which are lacking from the logogen model.




e e X e S W NG = ARG 1

Interactive Activation Model McClelland & Rumelhart
Part 1 33

The notion that word perception takes place in a hierarchical information
processing system has, of course, been advocated by several researchers
interested in word perception (Adams, 1979; Estes, 1975; LaBerge & Samuels,
1974; Johnston & McClelland, in press; McClelland, 1976). Our model differs
from those proposed in many of these papers in that processing at different
levels 1is explicitly assumed to take place in parallel. Many of the models
are not terribly explicit on this topic, although the notion that partial
information could be passed along from one level to the next so that process-
ing could go on at the higher level while it was continuing at the lower level
had been suggested by McClelland (1976). Our model also differs from all of
these others, except that of Adams (1979), in assuming that there is feedback
from the word level to the letter level. The general formulation suggested by
Adams (1979) is quite similar to our own, although she postulates a different
sort of mechanism for handling pseudowords (excitatory connections among

letter nodes) and does not present a detailed model.

Our mechanism for accounting for the perceptual facilitation of pseudo-
words involves, as we will see below, the integration of feedback from partial
activation of a number of different words. The idea that pseudoword percep-
tion could be accounted for in this way is similar to the assumptions of
Glushko (1979), who suggested that partial activation and synthesis of word
pronunciations could account for the process of constructing a pronunciation

for a novel pseudoword.

The feature extraction assumptions and the bottom-up portion of the word
recognition model are nearly the same as those employed by Rumelhart (1970,

1971) and Rumelhart and Siple (1974). The interactive feedback portion of the
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model is clearly one of the class of models discussed by Rumelhart (1977) and
could be considered a simplified control structure for expressing the model

proposed in thrat paper.

The Word Advantage, and the Effects of Visual Conditions

As we noted previously, word perception has been studied under a variety
of different visual conditions, and it is apparent that different conditions
produce different results. The advantage of words over nonwords appears to be
largest under conditions in which a bright, high-contrast target is followed
by a patterned mask with similar characteristics. The word advantage appears
to be considerably smaller when the target presentation is dimmer or otherwise

degraded and is followed by a blank white field.

Typical data demonstrating these points (from Johnston & McClelland,
1973) is presented in Table 2. Forced-choice performance on letters in words
is compared to performance on letters imbedded in a row of #'s (e.g., READ vs
#E##). The #'s serve as a control for lateral facilitation and/or inhibition.
(The latter factor appears to be important under dim target/blank mask condi-

tions).

Target durations were adjusted separately for each condition so that it
is only the pattern of differences within display conditions which is meaning-
ful. What the data show is that a 15% word advantage was obtained in the
bright target/patterned mask condition, and only a 5% word advantage in the
dim target/blank mask condition. Massaro and Klitzke (1979) obtained about
the same size effects. Various aspects of these results have also been corro-

borated in two other studies (Juola, Leavitt & Choe, 1974; Taylor & Chabot,
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Table 2

Effect of Display Conditions on
Probability Correct Forced Choices in

Word & Letter Perception, from Johnston & McClelland, 1973

Display Type

Visual Conditions Word Letter with #'s
Bright Target/Patterned Mask .80 .65
Dim Target/Blank Mask .78 .73
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1978).

To understand the difference between these two conditions it is important
to note that in order to get about 75 percent performance in the no-mask con-
dition, the stimulus must be highly degraded. Since there 1is no patterned
mask, the 1iconic trace presumably persists considerably beyond the offset of
the presentation. The effect of the blank mask is simply to reduce the con-
trast of the icon by summating with it. Thus, the limit on performance is not
so much the amount of time available in which to process the information as it
is the quality of the information made available to the system. In contrast,
when a patterned mask is employed, the mask interrupts the iconic trace and
produces spurious inputs which can serve to disrupt the processing. Thus, in
the bright target/pattern mask conditions, the primary limitation on perfor-
mance 1is the time in which the information is available to the system rather
than the guality of the information presented. This cdistinction between the
way 1in whiech blank masks and patterned masks interfere with performance has
previously been made by a number of investigators, including Rumelhart (1970)
and Turvey (1973). We now turn to consider each of these sorts of conditions

in turn.

Word Perception Under Conditions of Degraded Input

In conditions of degraded (but not abbreviated) input, the role of the
word level is to selectively reinforce possible letters consistent with the
visual information extracted which are also consistent with the words 1in the
subject's vocabulary. Recall that the task requires the subject to choose

between two letters which (on word trials) both make a word with the rest o!

the context. There are two distinet cases to consider. Either the featural

+
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information extracted about the to-be-probed letter is sufficient to distin-
guish Dbetween the alternatives, or it is not. Whenever the featural informa-
tion is consistent with both of the forced-choice alternatives, any feedback
will selectively enhance both alternatives, but will not permit the subject to
improve his ability to distinguish between them. When the information
extracted 1is inconsistent with one of the alternatives, there is nothing for
the model to do if we assume that the subject can actually use the extracted
feature information directly when it comes time to make the forced choice.
However, the subject may not have direct access to this information. If we
assume that forced-choice responses are based not on the feature information
itself but on the subject's best guess about what letter was actually shown,
then the model can produce a word advantage. The reason is that feedback from
the word level will increase the probability of correct choice in those cases
where the subject extracts information inconsistent with the incorrect alter-
native, but consistent with a number of other letters. Thus, feedback would
have the effect of helping the subject select the actual letter shown from
several possibilities consistent with the set of extracted features. Consider
again, for example, the case of the presentation of WORD discussed above. In
this case, the subject extracted incomplete information about the final letter
consistent with both R and K. Assume that the forced choice the subject was
to face on this trial was between a D and a K. The account supposes that the
subject encodes a single letter for each letter position before facing the
forced choice. Thus, if the features of the final letter had been extracted
in the absence of any context, the subject would encode R or K equally often
since both are equally compatible with the features extracted. This would

leave him with the correct response some of the time, But if he chose R

et t
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instead, he would enter the forced choice between D and K without knowing the
correct answer directly. When the whole word display is shown, the feedback
generated by the processing of all of the letters greatly strengthens the K,
increasing the probability that it will be chosen over the R, and thus
increasing the probability that the subject will praceed to the forced choice

with the correct response in mind.

Our interpretation of the small word advantage in blank mask conditions
is a specific version of the early accounts of the word advantage offered by
Wheeler (1970) and Thompson & Massaro (1973), before it was known that the
effect depends on masking. Johnston (1978) has argued that this type of
account does not apply under patterned mask conditions. We are suggesting
that it does apply to the small word advantage obtained under blank mask con-
ditions like those of the Johnston and McClelland (1973) experiment. We will
see below that the model offers a different account of performance under pat-

terned mask conditions.

We simulated this interpretation of the small word advantage obtained in
blank mask conditions in the following way. A set of U0 pairs of four-letter
words differing by a single letter was prepared. From these words correspond-
ing control pairs were generated in which the critical letters from the word
pairs were presented in non-letter contexts (#'s). Because they are presented
in non-letter contexts, we assume that these letters do not engage the word
processing system at all. In fact we have run some simulations allowing such
stimuli to interact with word-level knowledge and it makes little difference

to the overall results.
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Each member of each pair of items was presented toc the model U times,
yielding a total of 320 stimulus presentations of word stimuli and 320 presen-
tations of single letters. On each presentation, the simulation sampled a
random subset of the possible features to be detected by the system. The pro-
bability of detection of each feature was set at .U5. The values of the
feature to letter excitation and inhibition parameters were set at .005 and
.15 respectively. As noted previously, these values are in a ratio of 1 to
30, so that if any one of the fourteen features extracted is inconsistent with
a particular letter, that letter receives net inhibition from the features,

and is rapidly driven into an inactive state.

For simplicity, the features were treated as a constant input which
remained on while letter and word activations (if any) were allowed to take
place. At the end of 50 processing cycles, output was sampled. Sampling
results in the selection of one letter to fill each position; the selected
letter is assumed to be the only thing the subject takes away from the target

display.

The forced choice is assumed to occur as follows. The subject compares
the letter selected for the appropriate position against the rorced-choice
alternatives., If the letter selected is one of the alternatives, then that
alternative 1is selected. If it is not one of the alternatives, then one of

the two alternatives is simply picked at random.

The simulation was run twice, once using the low value of letter to word
inhibition 1listed in Table 1 and once using the high value. The results were

different in the two cases. When the small letter to word inhibition value

was used the letters embedded in words were T78% correct, whereas those in #'s
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were 68% correct -- a 10% difference. When the larger value of letter to word

inhibition was used, the two conditions showed no difference. The reason for
this difference is as follows. Under conditions in which incomplete feature
information i3 extracted from the display, multiple letters become active in
each position. When the letter to word inhibition is strong, these antiva-

tions keep any word from becoming activated. For example, suppose that 'e',

'o', 'c' and 'q' were all partially activated in the second position after
presentation of the word READ. Then the activations of ‘o', 'c¢', and 'q'
would inhibit the node for 'read', the activations of 'e', 'e¢' and 'q' would

inhibit the node for 'road', etc. Other partial activations in other posi-
tions would have similar effects. Thus, few words ever receive net excitatory
input, no feedback 1is generated, and little advantage of words over letters
emerges., When the letter to word inhibition is weak, on the other hand, words
which are consistent with one of the active letters in each position can
become active, thereby allowing for facilitation by feedback. If, as we have
assumed, the letter to word inhibition parameter is under the subject's con-
trol, then this would be a situation in which it would be advantageous for
subjects to use a small value of this parameter. Thus, we would assume that
under conditions of degraded input subjects would be inclined to adopt a low
value of letter to word inhibition, with the effect that partial activation of

multiple possible letters in each position would permit the activation of a

set of possible words.

Apparently, the low value of letter to word inhibition produced a larger
effect in the simulation than is observed in experiments. However, there are,
as Johnston (1978) has pointed out, a number of reasons why an account such as

the one we have offered would overestimate the size of the word advantarec.
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For one thing, subjects may occasionally be able to retain an impression of

the actual visual information they have been able to extract. On such occa-

sions, feedback from the word level will be of no further benefit. Second,
even if subjects only retain a letter identity code, they may tend to choose a

' forced-choice alternative which is most similar to the letter encoded, instead

of simply guessing when the letter encoded is not one of the two choice alter-
natives. Since the letter encoded will tend to be similar to the letter

shown, this would tend to result in a greater probability correct and less of

e —— e S0

a chance for feedback to increase accuracy of performance. It is hard to know

exactly how much these factors should be expected to reduce the size of the

. e——— . .

word advantage under these conditions, but they should reduce it some, bring-

ing our simulation closely in line with the results.

Word Perception Under Patterned Mask Conditions

When a high quality display is followed by a patterned mask, we assume

that the bottleneck in performance does not come in the extraction of feature

information from the target display. Thus, in our simulation of these condi-
tions, we assume that all of the features presented can be extracted on every’

trial. The limitation on performance comes from the fact that the activations

produced by the target are subject to disruption and replacement by the mask
before they can be translated into a permanent form suitable for overt report.
This general idea was suggested by Johnston and McClelland (1973), and con-
sidered by a variety of other investigators, including Carr, et al (1978),
Massaro and Klitzke (1979) and others. On the basis of this idea, a number of
possible reasons for the advantage for letters in words have been suggested.

One is that letters in words are for some reason translated more quickly into
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a non-maskable form (Johnston & McClelland, 1973; Massaro & Klitzke, 1979).
Another is that words activate representations removed from the direct effects
of visual patterned masking (Johnston & McClelland, 1973, in press; Carr et
al, 1978; McClelland, 1976). In the interactive activation model, the reason
letters in words fare better than letters in nonwords 1is that they benefit
from feedback which can either drive then to higher activation levels or which
can keep them active longer in the face of inhibitory influences of masking,
or both. 1In either case, the probability that the activated letter represen-

tations will be correctly encoded is increased.

To understand how this account works in detail, consider the following
example. Figure 8 shows the operation of our model for the letter E both in
an unrelated letter context and in the context of the word READ for a visual
display of moderately high quality. We assume that display conditions are
sufficient for complete feature extraction, so that only the letters actually
contained in the target receive net excitatory input on the basis of feature
information. After some number of cycles have gone by, the mask is presented
with the same parameters as the target. The ask simply replaces the target
display at the feature 1level, resulting 1in a completely new input to the
letter level. This input, because it contains features incompatible with the
letter shown 1in all four positions, immediately begins to drive down the
activations at the letter level. After only a few more cycles, these activa-
tions drop below resting level in both cases. Note that the correct letter
was Aactivated briefly, and no competing letter was activated. However,
because of the sluggishness of the output process, these activations do not
necessarily result in a high probability of correct report. As shown in the

right half of the figure, the probability of correct report reaches a maximum
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rigure 8. Activation functions (top) and output values (bottom) for the
letter E, in unrelated context and in the context of the word READ.
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after 16 cycles at a performance level far below the ceiliné.

When the letter is part of a word (in this case, READ), the activation of
the letters results in rapid activation of one or more words. These words, in
turn, feed back to the letter level. This results in a higher net activation
level for the letter embedded in the word. Moreover, since the letter embed-
ded in a word has feedback from the word level to help sustain its activation,

it is less readily displaced by the mask. This effect is not visible in the

Figure. However, as the input strength is increased and the activations begin
to 1level off, the difference between these two functions is increasingly in

persistence and not in neight of the activation curve.

We have carried out severa)l simulations of the word advantage using the

same stimulus 1list wused for gsimulating the blank mask results. Since the
internal workings of the model are completely deterministic as long as proba-

bility of feature extraction is 1.0, it was only necessary to run cach item

through the model once to obtain the expected probability that the critical
letter would be encoded correctly for each item, under each variation of

parameters tried.

One somewhat problematical issue involves deciding when to read out the

results of processing and select candidate letters for each letter position.

For simplicity, we have assumed that this occurs in parallel for all four
L . letter positions and that the subject learns through practice to choose a time
to read out in order to optimize performance. We have assumed that readout
t.ime may be set at a different point in different conditions, as long as they

are blocked so that the subject knows in advance what type of material will be

presented on each trial in the experiment. Thus, in simulating the Johnston
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and McClelland (1973) results, we assumed different readout times for letters
in words and letters in unrelated context, with the different times selected
on the basis of practice to optimize performance on each type of material.
However, this is not a critical characteristic of the account. The word
advantage 18 only reduced slightly if the same readout time is chosen for both
single letters and 1letters 1in words, based on optimal performance averaged

over the two material types.

Employing the parameter values given in Table 1 with the high value of
the letter to word inhibition parameter and the moderate intensity input
parameters employed in the figure, we get 81 percent correct on the letters
embedded in words and 66 percent correct for letters in a # context or iso-
lated single letters with a 15-cycle target presentation followed immediately
by the mask. The results were hardly effected at all by using the lower value
of letter to word inhibition, for reasons which will be clearer when we con-
sider the effect of this parameter on activation at the word level in the sec-
tion on the perception of pronounceable nonwords below. For either parameter

value, the model provides a close account of the Johnston-McClelland data.

We have explored our model over a substantial range of input parameter
values and have obtained large word advantages over single letters over much
of the range. In the case of very high intensity inputs, however, we were
forced to add an additional assumption to produce a reasonably large word
advantage. As we already noted, when the input is very strong the effect of
feedback 1is to increase the persistence, rather than the height of the letter
activation curves. But as we increase the intensity of the display we also

increase the potency of the mask. Eventually, the mask becomes so strong that
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it can drive activations for both single letters and letters embedded in words
down so quickly that there is little difference between them. In order to get

the advantag2 n this case, it was necessary to adopt the assumption that

T

there 1is a maximum inhibitory effect that can be exerted from the feature to
the letter level. A value of .55 works out well over a large range of

stimulus intensities. Note that for low or moderate values of input strength

e A et ———

this parameter does not come in to play, but it is quite important in the case

—— .

of a very high quality display.

Such high quality input conditions represent a kind of upper extreme of
the range we have explored. We have also explored what happens with low qual-

ity inputs in which the stimulus quality is so poor that some of the features

——— v - — -

may go undetected. These conditions produce a reasonable word advantage also,
‘ but only as long as a lower value of letter to word inhibition is adopted. As
we saw before, with degraded input it is necessary to use a lower value of

letter to word inhibition in order to allow words to become activated even

when there are multiple letter possibilities active in some or all of the

letter positions.

Effects of Masking with Letters and Words

Several studies in the recent literature examine the effects on word per-
ception of following the target with a mask which is composed of letters or
words, as opposed to a patterned stimulus containing nonsense squiggles or
nonletter printing characters (Jacobson, 1973, 1974; Taylor & Chabot, 1978).
In all three of these studies, it appears that performance on words is worse
when the mask contains unrelated letters or words than it is when the mask

contains nonletters, and there is little or no difference between words and
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unrelated letter strings as masks, as long as the word is unrelated to the
target. One of us has recently collaborated in a study using the Reicher pro-
cedure which shows analogous results (Johnston & McClelland, in press). In
addition, we find that the presence of letters in the mask hurts performance
on single letter displays very little compared to the extent to which it hurts
performance on letters in words. Thus, the word advantage over single letters
is reduced when a mask containing letters is used, compared to non-letter pat-

terned masks.

In these experiments, Johnston and McClelland (in press) compared perfor-
mance on single letters and letters in words under three types of masking con-
ditions: Masking with words, masking with random letter sequences, and masking
with non-letter characters formed by recombining fragments of letters to make
non-letters. One experiment compared perception of letters and words when the
stimuli were masked with non-letter mask characters and when they were masked
with words. Each condition was tested in a separate block of trials, to allow
subjects to try to optimize their performance in each condition. As in most
word perception experiments, target duration was varied between subjects to
find a duration for each subject at which about 75% correct average perfor-
mance over all material types was achieved. The results, shown in Table 3,
indicate that there was a 1large word advantage with the non-letter masks.
This replicates the typical finding in such studies. The interesting finding
is that the word advantage is considerably reduced with word masks. This is
true even though the non-letter character masks contain the same set of 1line

segments occurring in the letters used in the word masks.
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Actual & Simulated Results
(Probability Correct Forced Choice)

Johnston & McClelland (in press)

Experiment I
Nonletter Mask
Word Mask

Experiment II
Word Mask
Letter Mask

Experiment II[I
Nonletter Mask
Letter Mask

Simulation
Nonletter Mask
Letter Mask

Word Mask

Note: In Experiment III, target duration was 10 msec longer with letter masks

than with nonletter masks,

teraction.

Table 3

Word

.86

.74

.78

.78

.86

.79

.90
.76
.76

Target Type

Letter

.11
.68

15

<15

.65

.71

.70
.69

.69

McClelland & Rumelhart

Difference

A5

.06

.03
.03

21

.08

.20
.06

.06

in order Lo produce the observed cross-over in-~
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A second experiment compared performance on
using two kinds of masks containing letters.
words as in Experiment I; in the other they formed
Both types of material produced a very slight word

difference between them.

McClelland & Rumelhart

49

words and single letters
In one, the letters spelled
unrelated letter strings.

advantage, and there was no

The third experiment compared performance on words and single letters

with the same non-letter masks used in the first experiment, and with masks

containing four unrelated letters., Target duration was set slightly longer in

the 1letter mask condition to achieve approximately the same overall percent

correct performance level in each of the two mask conditions. That is, target

duration was always set to be 10 msec longer with letter mask than with the

feature mask. The manipulation was successful in

eliminating the overall

difference between feature and letter mask conditions, but did not eliminate

the interaction of target and mask type. The size of the word advantage over

nonwords was more than twice as great in the feature mask condition as in the

letter mask condition.

Our model provides a simple account of the main findings as illustrated

in Figure 9. In the case of word targets, the letters in the mask become

active before the output reaches its maximum strength. These new activations

compete with the old ones produced by the target to reduce the probability of

correctly encoding the target letter. A secondary effect of the new letters

is to inhibit the activation of the word (or words)

previously activated by

the mask. This indirectly results is an increase in the rate of decay of the

target letters, because their top-down support is weakened. A tertiary effect

of the mask, if it actually contains a word, is to begin activating a new word
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Flgure 9. Activation functlons (top) and output probability curves (bot-
tom) for the letter O, both alone (left) and in the word MOLD (right), with

feature, letter, and word masks.
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at the word level. These later two effects do not actually come 1into play
until after the peak of the output function has already passed, so they have

no effect on performance.

According to this interpretation, the major role of letters in the mask
is to compete at the lettér level with the letters previously activated by the
target. Competition of this sort also happens with single letter targets as
well, but it has less of an effect in this case for the following reason. The
activations for single letter targets are not reinforced by the word 1level,
and so the bottom-up inhibition generated by the mask more quickly drives the
old activations down. By the time the mask has a chance to activate new
letters, the peak 1in the output function has already been reached. The new
letters definitely have an effect on the tail of the output function, but we
assume that subjects read out at or near the peak so these differences are

irrelevant.

In preliminary attempts to simulate these results, we found that the
model was quite sensitive to the similarity of the letters in the target and
the feature-arrays (be they letters or non-letters) in the mask. We therefore
tailored the non-letter mask characters to have the same number of features
different from the target letter they were masking as the mask letters had.
For this reason, it was not feasable to test a large number of different
items. Instead, we tested all four letters in the word MOLD. The letter mask
display was ARAT, and the four feature masks were constructed so that the
first‘had the same number of features in common with M as the 1letter A did,
the second had the same number of features in common with O as R did, etec.

For the word mask, we simply altered the lexicon of the program so that ARAT
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"pecame" a word (if only such manipulations could be used on human subjects!).
Thus, we have tests of four different letters (M,0,L, and D) at each joint
level of taget type (word, single letter) and mask type (feature, letter
word), and all three masks types are exactly equated in their bottom-up

potency.

The results of the simulation are summarized in the Table 3. TIn produc-
ing an interaction of this magnitude, we had to assume very high levels of
feature to letter excitation and inhibition (.04 and 1.2, respectively).
Under these conditions, the the bulk of the effect of feedback is to increase
the persistence (rather than the height) of the activation function. The
strong input values for the mask also permit the new letters in the mask to
produce new activations very rapidly at the letter level, thus contributing to

the size of the interaction.

The simulation results shown in the Table were produced using the strong
value (.21) of letter to word inhibition. It seems appropriate to use the
strong value since the subjects expected only words, as discussed in the next
section (with this value, the fact that ARAT is pronounceable is irrelevant to
the functioning of the model, as we shall see). In fact though, the simula-
tion produces the interaction both with strong and weak letter to word inhibi-
tion, although it is somewhat weaker with weak letter to word inhibition. The
reason for the difference has to do with the strength of the secondary effect
of the mask letters in inhibiting the word(s) activated by the target, thereby
removing the support of the activations of the letters in the target word.
With stronger letter to word inhibition, this effect is stronger than when the

letter to word inhibition is weak.
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The Johnston & McClelland (in press) experiment was designed as a test of
a hierarchical model of word perception. in which there was no feedback from
the word level to the letter level. Instead, readout could occur from either
the letter level or the word level. The greater effectiveness of letter masks

was assumed to be due to activation of new letters which would provide disrup-

; tive input to the word level. In our model, the greater effectiveness of

letter masks is also assumed to be due to activation of new letters, but for a

U OT S

slightlly different reason. Instead of interfering directly with the

representation at the word-level, the new letters produce the bulk of their

———.—

effect by interfering with the readout of old activations at the letter level
which are being maintained by feedback. We have not been able to think of a

way of distinguishing these views, since they differ mainly in the level of

- T g " =

the system from which readout occurs, something which may be very difficult to
assess directly. In any case, it is clear that our model provides an account
of the effect of mask letters, in addition to its account of the basic effects :

of patterned and unpatterned masks.

Perception of Regular Nonwords

One of the most important findings in the literature on word perception

is that an 1item need not be a word in order to produce facilitation with

e —— ——— e e,

respect to unrelated letter or single letter stimuli. The advantage for pseu-
dowords over unrelated letters has been obtained in a very large number of
studies (Aderman & Smith, 1971; Baron & Thurston, 1973; Carr, et al, 1978;
McClelland, 1976; Spoehr & Smith, 1975). The pseudoword advantage over single

letters has been obtained in three studies (Carr, et al, 1978; Massaro &

Klitzke, 1979; McClelland & Johnston, 1977).
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As we have already noted, these effects appear to depend on subjects'
expectations. When subjects know that the stimuli include pseudowords, both
words and pseudowords have an advantage over unrelated letters (and single
letters) and the difference between words and pseudowords is quite small. In
some studies, no reliable difference is obtained (Spoehr & Smith, 1975; Baron
& Thurston, 1973; McClelland & Johnston, 1977) whereas in others, a difference
has been reported of up to about 6% (Carr, et al, 1978; Manelis, 1974; McClel-

land, 1976).

Interestingly, when subjects do not expect pseudowords to be shown,
letters in these stimuli have no advantage over unrelated letters. Aderman
and Smith (1971) found that this was true when the subjects expected only
unrelated letters. Carr, et al (1978) replicated this effect, and added two
very interesting facts (Table 4). First, the word advantage over unrelated
letters can be obtained when sSubjects expect only unrelatec letters, even
though letters in pseudowords show no reliable advantiage at all under these
conditions. Second, when subjects expect only words they perform quite poorly

on letters in pseudowords compared to unreiated letters,

At first glance, these data seem to sugges! *hat ‘rere must be different
processing mechanisms responsible for the wor! i pseujoword effects,  There
seems to be a word mechanism which is engaged sutamat: 4lly it the stimulus is
a word, and a pseudoword mechanism which is brought into play only if pseudo-
words are expected. However, we will show that these results are completely
consistent with the view that there i3 a single mechanism for processing both
words and pseudowords, with a parameter which is under the subject’'s control

determining whether the mechanism will produce a facilitation only for words
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Table 4

Effect of Expected Stimulus Type
on the Word and Pseudoword Advantage over Unrelated Letters
(Difference in Probability Correct Forced Choice)

Carr, et al, 1978

Expectation
Target Word Pseudoword Unrelated
Letters
Word .15 .15 .16

Pseudoword .03 .1 -.02
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or for both words and pseudowords, First, we will examine how the model

accounts for the pseudoword advantage at all.

The Basic Pseudoword Advantage

The model produces the facilitation for pseudowords by allowing them to
activate nodes for words which share more than one letter in common with the
display. When they occur, these activations produce feedback, just as in the
case of words, strengthening the letters which gave rise to them. These
activations occur in the model if the strength of letter to word inhibition is

reasonably small compared to the strength of letter to word excitation.

To see how this takes place in detail, consider a brief presentation of
the pseudoword MAVE, followed by a patterned mask (the pseudoword is one used
by Glushko, 1979, in developing the idea that partial activations of words are
combined to derive pronunciations of pseuvdowords). For this example, the
input parameters corresponding to the moderate quality display were used, in
conjunction with low letter to word inhibition. As illustrated in Figure 10,
presentation of MAVE results in the initial artivation of 16 different words.
Most of these words, 1like 'have' and 'gave', share three letters in common
with MAVE., By and large, these words steadily gain in strength while the tar-
get 1is on, and produce feedback to the letter level, sustaining the letters

which supported them.

Some of the words are weakly activated for a brief period of time before
they fall back below zero. These, typically, are words like 'more' and 'many'

which share only two letters with the target but are very high in frequency,

so they need little excitation before they exceed threshold. But, soon after
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Figure 10, Activation at the word level upon presentation of the nonword
MAVE,
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they exceed threshold, the total activation at the word level gets strong
enough to overcome the weak excitatory input, causing them to drop down just
after they Legin to rise. Less frequent words sharing two 1letters with the
word displayed have a less exeiting fate still. Since they start out ini-
tially at a lower value, they generally fail to receive enough excitation to
make it up to threshold. Thus, words which share only two letters in common
with the target tend to exert a rather minimal influence on the amount of
feedback being generated. In general then, the amount of feedback, and hence
the amount of facilitation, depends primarily on the activation of nodes for
words which share three letters with a displayed pseudoword. It is the nodes
for these words which primarily interact with the activations generated by the
presentation of the actual target display, so in what follows we will use the
word neighborhood to refer to the set of words which have three letters in

common with the target letter string.

The amount of feedback a particular letter in a nonword receives depends,
in the model, on two primary factors and two secondary factors. The two pri-
mary factors are the number of words in the entire nonword's neighborhood
which 1include the letter, and the number of words which do rot. In the case
of the M in MAVE, for example, there are 7 words in the neighborhood of MAVE
which begin with M, 380 the 'm' node gets excitatory feedback from all of
these. These words are called the "friends" of the 'm' node in this case.
Because of competition at the word level, the amount of activation which these
words receive depends on the total number of words which share three letters
in common with the target. Those which share three letters with the target
but are inconsistent with 'm' (e.g., 'have') produce inhibition which tends to

limit the activation of the friends of 'm', and can thus be considered th
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enemies of 'm'. These words also produce feedback which tends to activate

- A

letters which were not actually presented. For example, activation from
'have' produces excitatory input to 'h', thereby producing some competition

with the 'm'. These activations, however, are usually not terribly strong.

Wt e e pas a2t

No one word gets very strongly active, and so leftters not 1in the actual
display tend to get fairly weak excitatory feedback. This weak excitation is
usually insufficient to overcome the bottom-up inhibition acting on non-

presented letters. Thus, in most cases, the harm done by top-down activation

e e —Ey - a4 5

of letters which were not shown is minimal.

A part of the effect we have been describing is illustrated in Figure 11,
Here, we compare the activations of the nodes for the letters in MAVE.
Without feedback, the four curves would be identical to the one "single
letter" curve included for comparison. So, although there is facilitation for
all four letters, there are definitely differences in the amount, depending on
the number of friends and enemies of each letter. Note that within a given
pseudoword, the total number of friends and enemies (i.e., the total number of

words with three letters in common) is the same for all the letters.

There are two other factors which affect the extent to which a particular

word will become active at the word level when a particular pseudoword is
shown. Although the effects of these factors are only rather weakly reflected
in the activations at the letter level, they are nevertheless interesting to
note, since they indicate some synergistic effects which emerge from the
interplay of simple excitatory and inhibitory influences in the neighborhood.

These are the rich-get-richer effect and the gang effect. The rich-get-richer

effect 1is 1illustrated in Figure 12, which compares the activation curves for

et e
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letter level

100, _

activation

Figure 11. Activation functions for the letters 'a' and 'v' in on presen-
tation of MAVE. Activation function for 'e' is indistinguishable from func-
tion for 'a', and that for 'm' is similar to that for ‘'v', The activation

function for a letter alone or in unrelated context is included for compari-
son.
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the nodes for 'have', 'gave', and 'save' under presentation of MAVE, The
words differ in frequency, which gives the words slight differences in base-
line activation., What is interesting is that the difference gets magnified,
so that at the point of peak activation there is a much larger difference.
The reason for the amplification can be seen by considering a system contain-
ing only two nodes 'a' and 'b', starting at different initial positive activa-
tion levels, 'a' and 'b' at time t. Let's suppose that 'a' is stronger than
'b' at t. Then at t+1, 'a' will exert more of an inhibitory influence on 'b',
since inhibition of a given node is determined by the sum of the activations
of all units other than itself. This advantage for the initially more antive
nodes is compounded further in the case of the effect of word frequency by the
fact that more frequent words creep above threshold first, thereby exerting an
inhibitory effect on the lower frequency words when they are still too weak to

fight back at all.

Even more interesting is the gang effect, which depends on the coordi-
nated action of a related set of word nodes. This effect is depicted in Fig-
ure 13. Here, the activation curves for the 'move, 'make', and ‘'save' nodes
are compared, In the language, 'move' and 'make' are of approximately equal
frequency, so their activations start out at about the same level. But they
soon pull apart. Similarly, 'save' starts out below 'move', but soon reaches
a higher activation. The reason for these effects is that 'make' and 'save'
are both members of gangs with several members, while 'move' is not. Consider
first the difference between 'make' and 'move'. The reason for the difference
is that there are several words which share the same three letters in common
with MAVE as 'make' does. 1In the list of words used in our simulations, there

are 6, These words all work together to reinforce the 'm', the 'a', and the
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the "rich 9et richer effect
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Figure 12. The rich-get-richer effect. Activation functions for the
nodes for 'have', 'gave' and ‘'save', under presentation of MAVE,
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Figure 13, The gang effect. Activation functions for 'move', 'male' and
"save' under presentation of MAVE,
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e', thereby producing much stronger reinforcement for themselves, Thus,
these words make up a gang called the 'ma_e' gang. In this example, there is
also a ' av~' wvang consisting of a different 6 words, of which 'save' is one.
All of these work together to reinforce the 'a', 'v', and 'e'. Thus, the 'a'

''and 'm' are rein-

and 'e' are reinforced by two gangs, while the letters 'v
forced by only one each. Now consider the word 'move'. This word is a loner;
there are no other words in its gang, the 'm_vp' gang. Although two of the
letters in 'move' receive support from one gang cach, and one receives support
rrom both other gangs, the letters of 'move' are less strongly enhanced by
feedback than the letters of the members of the other two ganegs. Since con-
tinued activation of one word in the face of the competition agenerated by al’
of the other partially activated words depends ~n the activations of the ~om-

ponent letter nodes, the words in the other two wsangs eventuo:iy gain  the

upper hand and drive 'move' back below the activation threshold.

As our study of the MAVE example 11lustrates, the pattern of achivation
which is produced by a particular pseudoword is complex and i1diosyneratic.  In
3idition to the basic friends and enemies effecots, there are also the rich-
pet-richer ani the gang effects. These effects are primarily reflected in the
pattern of activation at the word level, but they also oxert subtle influen.on
on  the activations at the letter level. In gene-al, *hough, the main rosuls
is that when the letter to word inhibition is low, all four letters an the
pseudoword receive some feedback reinforcement., The result, of cours», .=

vt or jecuracy reporting letters in pseudowords cowrpoead Foosingle fottera
o ale of Kxneetations
_—

It should now be clear that variation in le.ter to word inhibition pro-

diees different  degrecs of  enhancement. When this parameters ie sn-1°, tiae

b
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pseudoword advantage is large, and when the parameter is large, the advantage
gets small. Indeed, if the letter to word inhibition is equal to three times
the letter to word excitation, then no four-letter nonword can activate the
node for any four-letter word. The reason is that it can have no more than
three letters in common with a word. The inhibition generated by the letter
which 1is different will cancel the excitation generated by the letters that

are the same.

We can now account for Carr, et al's (1978) findings with pseudowords by
simply assuming that when subjects expect only words they will adopt a large
value of the letter to word inhibition parameter, but when they expect pseudo-

words they adopt a small value. Apparently, wher they expect unrelated letter

strings, at least of the type used in this experiment, they also adopt a large
value of letter to word inhibition. Perhaps this is the normal setting, with
a relaxation of letter to word inhibition only used if pseudowords are known

to occur in the list or when the stimulus input is very degraded.

But we have still to consider what effects variation of letter to word
inhibition might have for word stimuli. If relaxation of letter to word inhi-
bition increases accuracy for letters in pseudowords, we might expect it to do
! the same thing for letters in words. However, in general this is not the
case, Part of the reason is that the word shown still gets considerably more
\ activation than any other word, and tends to keep the activations of other

nodes from getting very strong. This situation is illustrated for the word
“AVE ir Yigure 14, A second factor is that partial activations of other words

are  not an unmixed blessing. The words which receive partial activations all

produce inhibition which keeps the activation of the node for the word shown
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activation

CAVE

Figure 14, Activity at the word level upon presentation of CAVE, with

weak letter to word inhibition.
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from getting activated as strongly as it would be otherwise. The third factor
is that the activations of any one word sharing three letters with the word
shown only reinforce three of the four letters in the display. For these rea-
sons, it turns out that the value of letter to word inhibition can vary from

.04 to .21 with very little effect on word performance.

Comparison of Performance on Words and Pseudowords

Let us now consider the fact that the word advantage over pseudowords is
generally rather small in experiments where the subject knows that the stimuli
include pseudowords. Some fairly representative results, from the study of
McClelland and Johnston (1977) are illustrated in Table 5. The visual condi-
tions of the study were the same as those used in the patterned mask condition
in Johnston and McClelland (1973). Trials were blocked, so subjects could
adopt the optimum strategy for each type of material. The slight word-
pseudoword difference, though representative, is not actually statistically

reliable in this study.

Words differ from pseudowords in that they strongly activate one node at
the word level. While we would tend to think of this as increasing the amount
of feedback for words as opposed to pseudowords, there is the word-ievel inhi-
bition which must be taken into account. This inhibition tends to equalize
the total amount of activation at the word level between words and pseudo-
words. With words, the word shown tends to dominate the pattern of activity,
thereby keeping all the words with three letters in common with it from
achieving the activation 1level they would reach 1in the absence a node
activated by all four letters. The result is that the sum of the activations

of all the active units at the word level is not much different between the

.
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Data

High BF

Low BF

Average

Simulation

High BF

Low BF

Average

Table 5

Actual and Simulated Results of the
McClelland & Johnston (1977) Experiments
(Probability Correct Forced Choice)

Target Type

Word Pseudoword Single Letter
, 81 .79 .67
.78 LT7 .64
.80 .78 .66
.81 .79 .67
.19 L7 .67
.80 .78 .67

McClelland & Rumelhart
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two cases. Thus, CAVE produces only slightly more facilitation for its con-

stituent letters than MAVE as illustrated in Figure 15.

In addition to the mere leveling effect of competition at the word level,
it turns out that one of the features of the design of most studies comparing
performance on words and pseudowords would operate in our model to keep per-
formance relatively good on pseudowords. In general, most studies comparing
performance on words and pseudowords tend to begin with a 1list of pairs of
words differing by one letter (e.g., PEEL-PEEP), from which a pair of nonwords
is generated differing from the original word pair by just one of the context
letters, thereby keeping the actual target letters and as much of the context
as possible the same between word and pseudoword items (e.g., TEEL-PEEL). A
previously unnoticed side-effect of this matching procedure is that it ensures
that the critical letter in each pseudoword has at least one friend, namely
the word from the matching pair which differs from it by one context letter.
In fact, most of the critical letters in the pseudowords used by McClelland
and Johnston tended to have relatively few enemies, compared to the number of
friends. 1In general, a particular letter should be expected to have three
times as many friends as enemies. In the McClelland and Johnston stimuli, the
great majority of the stimuli had much larger differentials. Indeed, more

than half of the critical letters had no enemies at all.

The Puzzling Absence of Cluster Frequency Effects

In the account we have just described, facilitation of performance on
letters in pseudowords was explained by the fact tnat pseudowords tend to
activate a large number of words, and these words tend to work together to

reinforce the activations of letters. This account might seem to suggest that
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‘a’ in different contexts
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Figure 15. Activation functions for the letter 'a', under presentation of
CAVE and MAVE, and alone.
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pseudowords which have common 1letter-clusters, and therefore have several
letters in common with many words, would tend to produce the greatest facili-
tation. However, this factor has been manipulated in a number of studies and
little has been found in the way of an effect. The McClelland and Johnston
study is one case in point, As the table illustrates, there is only a slight
tendency for superior performance on high cluster frequency words. This
slight tendency is also observed in single letter control stimuli, suggesting
that the difference may be due to differences in perceptibility of the target
letters in the different positions, rather than cluster frequency per se. In
any case, the effect is very small. Others studies have likewise failed to
find any effect of cluster frequency (Spoehr & Smith, 1975; Manelis, 1974).
Tne 1lack of an effect is most striking in the McClelland and Johnston study,
since the high and low cluster frequency items differed widely in cluster fre-

quency as measured in a number of different ways.

In our model, the lack of a cluster frequency effect is due to the effect
of mutual inhibition at the word level. As we have seen, this mutual inhibi-
tion tends to keep the total activity at the word level roughly constant over
a variety of different input patterns, thereby greatly reducing the advantage
for high cluster frequency items. Items containing infrequent clusters will
tend to activate few words, but there will be less competition at the word
level, so that the words which do become active will reach higher activation

levels.

The situation is illustrated for the nonwords TEEL and HOEM in Figure 16,
While TEEL activates many more words, the total activation is not much dif-

ferent in the two cases.
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summed word activations
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Figure 16. The number of words activated (top) and the total activation
at the word level (bottom) upon presentation of the nonwords TEEL and HOEM,
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i The total activation is not, of course, the whole story. The ratio of
friends to enemies 1is also important. And, it turns out that this ratio is
working against the high cluster items more than the low cluster items. It
turns out that in McClelland and Johnston's stimuli only one of the low clus-
i ter frequency nonword pairs had critical letters with any enemies at all! For

23 out of 24 pairs, there was at least one friend (by virtue of the method of
; stimulus construction), and no enemies. In contrast, for the high cluster

frequency pairs, there was a wide range, with some items having several more

enemies than friends.

To simulate the McClelland and Johnston results, we had to select a sub-

-

set of their stimuli, since many of the words they used were not in our word

list. Since the stimuli had been constructed in sets containing a word pair,

. —— e

a pseudoword pair, and a single letter pair differing by the same letters in
the same position ( e.g., PEEL-PEEP TEEL-TEEP; __ L-_ P), we simply selected
all those sets in which both words in the pair appeared in our list. This
resulted in a sample of 10 high cluster frequency sets and 10 low cluster fre-
‘ quency sets. The single letter stimuli derived from the high and low cluster
! frequency pairs were also run through the simulation. Both members of each

pair were tested.

Since the stimuli were presented in the actual experiment blocked by h
material type, we selected an optimal time for readout separately for words,
pseudowords, and single letters. Readout time was the same for high and low
2luster frequency items of the same type, since these were presented in a .
mixed 1ist in the actual experiment. The run shown in the table used th» fol-

lowing parameters: letter to word inhibition was set to the low value (.0U);
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the input parameters associated with the moderate quality display were used
(feature to letter excitation = .005, inhibition = .15). The display was

presented for a duration of 15 cycles.

The simulation shows the same general pattern as the actual data. As in
the actual data, the magnitude of the pseudoword advantage over single letters
is just slightly smaller than the word advantage, and the effect of cluster
frequency is very slight. Qualitatively similar results are obtained when the
input parameters associated with the very high quality display are used. For
the word condition, it makes very little difference if the value of letter to
word inhibition is high or low, except that the slight advantage for high

cluster frequency words is eliminated.

We have yet to consider how the model deals with unrelated letter
strings. This depends a little on the exact characteristics of the strings,
and the value of letter to word inhibition. With high letter to word inhibi-
tion, unrelated letters fare no better than pseudowords: they fail to excite
any words, and there is no feedback. When the value of letter to word inhibi-
tion gets 1low, there is some activity at the word level with many so-called
unrelated letter strings. Generally speaking, however, these strings rarely
have more than two letters in common with any one word. Thus, they only tend
to activate a few words very weakly, and because of the weakness of the
bottom-up excitation, competition among partially activated words keeps any
one from getting very active. So, little benefit results. When we ran our
simulation on randomly-generated consonant strings, there was only a 1% advan-

tage over single letters.

et ., \
3 : T || t .
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Some items which have been used as unpronounceable nonwords or unrelated
letter strings do produce a weak facilitation. We ran the nonwords used by
McClelland and Johnston (1977} in their Experiment 2., These items contain a
large number of vowels in positions which vowels tend to occupy in words, and
they therefore tend to activate more words than, say, random strings of con-
sonants. The simulation was run under the same conditions as the one reported
above for McClelland and Johnston's first experiment. The experiment produced
a slight advantage for letters in these nonwords, compared to single letters,
as did the experiment. In both the simulation and the actual experiment,
forced-choice performance was 4% more accurate for letters in these unrelated

letter strings than in single letter stimuli.

On the basis of this characteristic of our model, the results of one
experiment on the importance of vowels in reading may be reinterpreted.
Spoehr and Smith (1975) found that subjects were more accurate reporting
letters in unpronounceable nonwords containing vowels than in all consonant
strings. They interpreted the results as supporting the view that subjects
parse letter strings into "Vocalic Center Groups." However, an alternative
possible account is that the strings containing vowels had more letters in

common with actual words than the all consonant strings.

In summary, the model provides a good account of the perceptual advantage
for letters in pronounceable nonwords but not unrelated letter strings. In
addition, it accounts for the dependence of the pseudoword advantage on expec-
tation and for the lack of ar effect of expectatinn on the advantage for
letters in words. Third, the model accounts for the small difference between

performance on words and pseudowords when the subject is aware that the
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stimuli include pseudowords, and for the absence of any really noticeable

cluster frequency effect.

Our examination of the model suggests that there are different ways
interactive activation can influence perception. When letter to word inhibi-
tion is set to a high value, the system acts as a sharply tuned filter. In
this mode, the system will reinforce activations only of those patterns which
it has explicitly stored in particular nodes. When the same parameter is set
to a small value, the system allows for nodes for stored patterns which are
similar to the new input to become partially activated, thereby permitting it
to reinforce activations of patterns which are not in fact stored. In this
mode the model shows the capacity to apply knowledwue explicitly encoded as
spellings of particular words in such a way that it tacilitates the processing
of stimuli that are similar to several stored patterns, but not identical to

any.

The Role of Lexical Constraints

The Johnston Experiment

Several models which have been proposed to account for the word advantage
rely on the idea that the context letters in a word facilitate performance by
constraining the set of pcssible letters which might have been presented in
the critical letter position. Models of this class predict that contexts
which strongly constrain what the target letter might bLe result in greater
accuracy  of  perception than more weakly constraining contexts. For example,
the context HIF should facilitate the ;orception of an initial & more  than

the context INK. The reason 1is that HIP is more strongly constraining,
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since only three letters (S, C, and W) fit in the context to make a word, com-
pared to  INK, where nine letters (D, F, K, L, M, P, R, 5, and W) fit in the
context to make a word. In a test of such models, Johnston (1978Y compared
accuracy  of  perception of letters occurring in high and low constraint con-
texts. The same target letters were tested in the same positions 1in  both
cases, For example, the letters S and W were tested in the hiah constraint
HIF context and the low constraint _INK context, Using brri ght
target. patterned mask conditions, Johnston found no difference in accuracy of
perception between letters in the high and 1low constraint  contexts. The
results of this experiment are shown in Table 0. Johnston measured letter
perception in two ways. He not only asked the subjects to decide which of two
letters had been presented (the forced-choice measure), but he also asked sub-
Jects to report  the whole word and recorded how often they wot the oritica:l
letter correct. No significant ditfference was observed in either case. In
the forced choice there was o slight difference favoring low constraint ittems,

but in the free reovort there was no ditterence at all.

Although our model does use contextual constraints (as they are  embodied
in  specific lexical items), it turns out that it does not predict that highly
constraining contexts will facilitate perception of letters more than woeakly
constraining contests under bright target ‘pattern mask conditions.  lnder such
conditions, the role of the word level is not te help the subiect select among
alternatives  left  open by an incomplete feature analysis process, but rather

to Pelp maintain the activation of the nodes for the letters pres onted,

In Johnston's experiments, only words were shown, so on the basis of  our

interpretation of the Jarr et al (1973) findings mentioned above, we would

S g oo Ter T
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Table 6

Actual & Simulated Results from Johnston (1978)

(Probability Correct)

Constraint
High Low
Actual Results
Forced Choice .768 . 795
Free Report L5485 LY
Simulation
Forced Choice 773 L7613
Free Report . 563 .54y

Note: Simulation was run using low letter to word inhibition and moderate
quality display parameters. Similar results are obtained using high quality
display parameters. There 1s no effect of constraints when high letter to

word inhibition is used.

-y —y -




JosnYe a8

Tnteractive Activation Model McClelland & Rumelhart
Part I 79
expect that subjects would tend to adopt a large value of letter to word inhi-
bition. If the .21 value were used, our model produces no difference whatso-
ever between high and low constraint items. The reason is simply that only
the ncde for the word actually shown ever gets activated at all. The nodes
for all other words receive either net inhibition or a net neutral input il

they share three letters in common with the word shown.

It we assume that a small value of letter to word inhibition is uscd (.04
nstead of .21), our model produces a very small advantage for high constraint
items. In this case, the presentation of a target word results in the weak
activation of the words which share three letters in common with the target.
Some of these words are "friends” of the critical letter in that they contain
the actual critical letter shown, as well as twon of thé letters from the con-
text (e.g., 'shop’ is 4 friend of the initial S in SHIP). Some of the words,
however, are "enemies" of the critical letter, in that they contain the three
context letters of the word, but 2 different letter 1in the critical letter
position (e.g, 'chip' and From our point of view, Johnston's constraint mani-
pulation is essent.ially a manipulation of the number of enemies the critical
letter has 1in the given context. It turns out that Johnston's high and low
constraint st‘muli have equal numbers of friends, on the average, but (by

design), the high constraint items have fewer enemias as shown in Table 7.

lis.ng a low value for the letter to word inhibition results in the
friends and enemies of the target word receiving some activation. Under these
cantitions fwith either high or moderate quality input parameters) our model

does produce a slight advantage for the high constraint items, The reason for

the slight effect is that lateral interference at the word level lets the
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Friends and Enemies of the

Critical Letters in the

Stimuli Used by Johnston (1978)

High Cons*“raint

friends enemies ratio

3.33
9.17
6.30

4,96

5.93

2.22
1.00
1.70

1.67

1.65

.60
.90
.79
.75

Low Constraint

friends enemies ratio

3.61 6.44 .36
6.63 2.88 .70
7.75 4,30 .64
6.67 3.50 .66
6.17 4,27

anathith

MR
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enemies of the critical letter keep the node for the word presented and the
nodes  tor the friends from getting quite as strongly activated as thev would
otherwise,  The effect is quite small for two reasons. First, the node tor
the word presented receives four excitatory inputs from the letter level, and
all other words can only receive at most three excitatory inputs, and at least
one  inhibitory i{nput. As we saw in the case of the word CAVE, the node for
the correct word dominates the activations at the word level, and is predom-
tnantly  responsible  for any feedback to the letter level. Second, while the
high constraint {tems have fower enemies, by more than a two  to  one margtn,
both - high and low  constraint items have, on the average, more friends than
rremien s The tfrionds of the target letter work with the actual word shown  fo
Rt the aetivations of the enemies in check, thereby reducing the extent or
theds dnhibitory etffect still further. The ratto of the namber  of  triends
cver che total number of neighbors is not atl that difterent in the two condi-

tions, except in the first serial position.

This discussion may give the tmpression that contextual constraint is not
an important vartable in our model.  In fact, it is quite powertul. Buat its
offfects are obscured in the Joheston experiment. because of the  strong  domi-
nance  of  the  target  word when all the features are exfracted, and the tact
that we are concerned with the lTikelihood of perceiving a4 particular letter
rather  than performance  in identitying correctly what whole word was shown,
We will now consider an oxperiment in which  contextual  constraints  play o

strong role, because the characteristies Just ment toned are absent .
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The Broadbent and Gregory Experiment

Up to now we have found no evidence that either bigram frequency or lexi-
cal constraints bhave any effect on performance. However, in experiments using
the traditional whole report method these variables have been shown to have
substantial effects. Various studies have shown that recognition thresholds
are lower, or recognition accuracy higher at a fixed recognition threshold
value, when relatively unusual words are used (Bouwhuis, 1979; Havens & Foote,
1963; Newbigging, 1961). Such items tend to be low in bigram frequency, and

at the same time high in lexical constraint.

In one experiment, Broadbent and Gregory (1968) investigated the role of
bigram frequency at two different 1levels of word frequency and found an
interesting interaction. We now consider how our model can account for their
results. To begin, it is important to note that the visual conditions of
their experiment were quite different from those of McClelland and Johnston
(1977) in which the data and our model failed to show a bigram frequency
effect, and of Johnston (1978) in which the data and the model showed no con-
straint effect., The conditions were like the dim target/blank mask conditions
discussed above, in that the target was shown briefly against an illuminated
background, without being followed by any kind of mask. The dependent measure
was the probability of correctly reporting the whole word. The results are
indicated in Table 8. A slight advantage for high bigram frequency items over
low bigram frequency was obtained for frequent words, although it was not con-
sistent over different subsets of items tested. The main finding was that
words of 1low bigram frequency had an advantage among infrequent words. For

these stimuli, higher bigram frequency actually resulted in a 1lower percent
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Table 8

Actual and Simulated Results of the
Broadbent & Gregory (1968) Experiment
(Probability Correct Whole Report)

Word Frequency

High Low
Actual Data
High BF . 645 L4317
Low BF .637 .583
Simulation
High BF LUy .212

Low BF . 394 .37
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correct.

Unfortunately, Broadbent and Gregory used 5 letter words, sSo we were
unable to run a simulation on their actual stimuli. However, we were able to
select a subset of the stimuli used in the McClelland and Johnston (1977)
experiment. which fit the requirements of the Broadbent and Gregory design. We
therefore presented these stimuli to our model, under the presentation parame-
ters used in simulating the blank mask condition of the Johnston and McClel-
land (1973) experiment above. The only difference was that the output was
taken, not from the letter 1level, as in all of our other simulations, but
directly from the word level. The low value of letter to word inhibition was
used, since with a high value few words ever become activated on the basis of
partial feature information. The results of the simulation, shown in the
Table below the actual data, replicate the obtained pattern very nicely. The
simulation produced a large advantage for the 1low bigram items, among the
infrequent words, and produced a slight advantage for high bigram frequency

items among the frequent words.

In our model, low frequency words of high bigram frequency are most
poorly recognized because these are the words which have the largest number of
neighbors. Under conditions of incomplete feature extraction, which we expect
to prevail under these visual conditions, the more neighbors a word has the
more likely it is to be confused with some other word. This becomes particu-
larly important for lower frequency words. As we have seen, if both a low
frequency word and a high frequency word are ecqually compatible with the
detected portion of the input, the higher frecuency word will tend to dom-

inate. When incomplete feature information is extracted, the relative activa-
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tion of the target and the neighbors is much lower than when all the features
have been seen. Indeed, some neighbors may turn out to be just as compatible
with the features extracted as the target itself. Under these circumstances,
the word of the highest frequency will tend to gain the upper hand. The pro-
bability of correctly reporting a low frequency word will therefore be much
more strongly influenced by the presence of a high frequency neighbor compati-

ble with the input than the other way around.

But why does the model actually produce a slight reversal with high fre-
quency words? Even here, it would seem that the presence of numerous neigh-
bors would tend to hurt instead of facilitate performance. However, we have
forgotten the fact that the activation of neighbors can be beneficial, as well
as harmful. The active neighbors produce feedback which strengthens most or
all of the letters, and these in turn increase the activation of the node for
the word -uown. As it happens, there turns out to be a delicate balance for
high frequency words between the negative and positive effects of neighbors,
which only slightly favors the words with more neighbors. Indeed, the effect
only holds for some of these items. We have not yet had the opportunity to
explore what all the factors are which determine whether the effect of neigh-

bors will balance out to be positive or negative in individual cases.

Different Effects in Different Experiments

This discussion of the Broadbent and Gregory experiment indicates once
again that our model 1is something of a chameleon. The model produces no
effect of constraint or bigram frequency under the visual conditions and test-
ing procedures used in the Johnston (1978) and McClelland and Johnston (1977)

experiments, but we do obtain such effects under the conditions of tbhe
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Broadbent and Gregory (1968) experiment. This flexibility of the model, of
course, is fully required by the data. While there are other models of word
perception which can account for one or the other type of result, to our
knowledge the model presented here is the only scheme that has been worked out

to account for both.

Discussion

The interactive activation model does a good job accounting for the
results of the 1literature we have reviewed on the perception of letters in
words and nonwords. The model provides a unified account for the results of a
variety of experiments, and provides a framework in which the effects of both
physical and psychological manipulations of the characteristics of the experi-
ments may be accounted for. In addition, as we shall see in Part II, the
model readily accounts for a variety of additional phenomena of word percep-
tion. Moreover, as we shall also show, it can be readily extended beyond its
current domain of applicability with substantial success. In Part I we will
report a number of experiments demonstrating what we call "Context Enhancement
Effects,"” and show how tne model can account for the major findings in the

experiments.

However, there are some problems which we have either ignored or failed
to solve which remain to be resolved. First, we have ignored the fact that
there is a high degree of positional uncertainty in reports of letters, par-
ticularly letters 1in unrelated strings, but also in reports of letters in
words and pseudowords on occasion (Estes, 1975; McClelland, 1976; McClelland &
Johnston, 1977). It is not entirely clear whether these uiicertainty effects

arise in the perceptual system itself, in the readout process, or both. 1t is
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quite possible that letters are kept well-organized by position in the activa-
tion system, but the process of reading them out is not easily restricted to a
single position channel (ef., Eriksen & Eriksen, 1972). Of course, it is also
quite possible that much of the problem arises from positional wuncertainty
within the activation system itself. Although we have not attempted to model
these effects in this paper, our model could easily be modified to account for
the rearrangements of letters and the fact that they occur more frequently in
unrelated letters than in words and pseudowords. Suppose, for example, that
the activations of letters were distributions of activation along a spatial
dimension, instead of points of activation assigned to a particular point in
an array. Then the activations for letters in adjacent positions would over-
lap, and if there was noise in the location of the mean of the distribution of
activation produced by a letter presented in a particular position, order
errors would be expected. Under these circumstances, feedback from the word
level could serve to reinforce that portion of the distribution of activation
in the correct spatial position, thereby shifting the mean of the distribution

toward the right position.

Another thing that we have not considered very fully is the serial posi-
tion curve. In general, it appears that performance is more accurate on the
end letters in multi-letter strings, particularly the first letter. The
effect is much more striking for unrelated letters than for pseudowords or
words (McClelland & Johnston, 1977). While part of this effect may be due to
reduced lateral masking of end letters and/or to a reduced opportunity for
crder error at the ends of the string, it seems likely that the first position
advantage reflects some sort of processing priority given to the first letter.

Some or all of this effect could be accommodated by our model by assuming that
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the strength of the effect exerted by the letter in a given position is influ-

enced by the deployment of attention, and that attention is deployed preferen-

tially to ihe first letter position.

A different possibility that we considered is that part of the serial
position effect could be due tc neighborhood effects. However, these would if
anything tend to hurt the first letter position relative to other positions
for the following reason. The first letter is, generally speaking, the letter
which has the most enemies. That is, the largest gangs tend to be those con-
sisting of the 1last three letters of the item and leaving out the first
letter. Thus, the word level will tend to produce greater feedback for the
second, third and fourth letter than for the first. In view of this, we can
see that one reason for directing attention predominantly to the first letter

would be to offset this gang effect.

There are some effects of set on word perception which we have not con-
sidered. Johnston and McClelland (1974) found that perception of letters in
words was actually hurt if subjects focused their attention on a single letter
position 1in the word (See also Holender, 1979, and Johnston, 1974). One pos-
sible interpretation of these effects would be that they result from the nar-
rowing of the focus of attention so that visual information from the non-
target letters is simply not made available to the letter and word levels.
Another possibility is that the focusing of attention on the contents of a
single letter position disrupts the process of directing the letter informa-
tion into the correct position-specific channels. It seems likely that either

of these possibilities could be worked into our model.
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In all but one of the experiments we have simulated, the primary (if not
the only) data for the experiments were obtained from forced choices between
pairs of letters, or strings differing by a single letter. In these cases, it
seemed to us most natural to rely on the output of the letter level as the
basis for responding. However, it may well be that subjects often base their
responses on the output of the word level. Indeed, we have assumed that they
do in experiments like the Broadbent and Gregory (1968) study, in which sub-
jects were told to report what word they thought they had seen. This may also
have happened in the McClelland and Johnston (1977) and Johnston (1978) stu-
dies, in which subjects were instructed to report all four letters before the
forced choice on some trials. Indeed, both studies found that the probability
of reporting all four letters correctly for letters in words was greater than
we would expect given independent readout of each letter position. It seems
natural to account for these completely correct reports by assuming that they
often occurred on occasions where the subject encoded the item as a word.
Even in experiments where only a forced choice is obtained, subjects may still
come away with a word, rather than a sequence of letters on many occasions.
In the early phases of the development of our model, we explicitly included
the possibility of output from the word level as well as the letter level. We
assumed that the subject would either encode a word, with some probability
dependent on the activations at the word level or, failing that, would encode
some letter for each letter position dependent on the activations at the
letter level., However, we found that simply relying on the letter level per-
mitted us to account equally well for the results. In essence, the recason is
that the word-level information is incorporated into the activations at  the

letter level because of the feedback, so that the word level is largely redun-
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dant. In addition, of course, readout from the letter level is necessary to

the model's account of performance with nonwords. Since it is adequate to
account for all of the forced-choice data, and since it is difficult to know
exactly how much of the details of free-report data should -~e attributed to
perceptual processes and how much to such things as possible biases 1in the

readout processes, etc., we have stuck for the present with readout from the

letter level.

Another decision which we adopted in order to keep ¢the model within
bounds was to exclude the possibility of processing interactions between the
visual and phonological systems. However, in the model as sketched at the
outset (Figure 1), activations at the letter level interacted with a phonolog-
ical level as well as the word ievel. As we will show in Part II, some of our
Context Enhancement results with pseudowords are difficult to account for in
the simplified framework applied in Part I. To accommodate the findings, it
may be appropriate to incorporate interactions between the letter level and

the phoneme level.

Another simplification we have adopted in Part I has been to consider
only cases in which individual letters or strings of letters were presented in
the absence of linguistic context. In Part Il we will consider the effects of
introducing contextual inputs to the word level, and we will explore how tne

model might work in processing spoken words in context as well.

Thus far we have commented in this discussion on the completeness of the
interactive activation model to account for the data in the literature on word
pereeption and related domains. But the model is also interesting for reasons

quite apart from its success in accounting for the data obtained in particular
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experiments, It also illustrates the operation of a kind of mechanism which
we  believe deserves further exploration, not only for word perception but for
other perceptual domains and other aspects of information processing as well.
Our  various simulations show a number of different ways an activation mechan-
ism can be used to process information. It can 11l in missing informatiosn in
tamiliar words. [t can act as a sharply tuned filter, focusing activation on
a single word consistent with all of the information presented. Or 1t ¢an
synthesice novel percepts, making use of feedback from a number of partially
relevant partial activations. In PFart [ we will consider a few of the ways

such a mechanism might be used in such diverse tasks as categorication, memory

search, and retrieval,
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